Autokombi.ru

Авто-портал
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое синхронный генератор, и чем он лучше АГ

Синхронные и асинхронные генераторы

Синхронные и асинхронные генераторы

Бензиновые и дизельные электростанции состоят из двух основных блоков – двигателя и генератора, объединенных на одной раме.

В бытовых электростанциях в большинстве случаев используются двигатели внутреннего сгорания. В двигателе внутреннего сгорания энергия сгорания топлива преобразуется в механическую работу (вращение вала). Бытовые газовые электростанции представляют собой бензиновые, адаптированные для работы на газе.

Генераторы преобразуют механическую энергию в электрическую.

Бывают двух типов:

  1. Синхронные
  2. Асинхронные.

Но сначала, Принцип работы электрического генератора

Принцип действия любого генератора основан на явлении электромагнитной индукции. Преобразование механической энергии двигателя (вращательной) в энергию электрического тока поясняет следующая картинка:

Если в однородном магнитном поле равномерно вращается рамка, то в ней возникает, переменная Э.Д.С. (электродвижущая сила), частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один – Э.Д.С. , изменяющаяся по гармоническому закону.

Видео, принцип работы электрического генератора тока.

Отличительные особенности синхронных и асинхронных генераторов:

Синхронный генератор

Это синхронная электрическая машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор состоит из обмоток при подаче напряжения на которые появляется магнитное поле с магнитными полюсами и создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС.

В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным. Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в асинхронном генераторе

Ротор, при запуске электростанции , создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля.

Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется “реакцией якоря”.

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке ( для синхронных генераторов), что и обеспечивается блоком AVR ( Автоматический вольт регулятор).

Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, на уровне ±1%.

Преимуществом синхронных генераторов является высокая стабильность выходного напряжения, а недостатком – возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора, что может привести к выходу из строя.

Еще к недостаткам синхронных генераторов можно отнести наличие щеточного узла, который рано или поздно придется обслуживать, правда в настоящее время этот недостаток практически устранен.Так как, современные синхронные генераторы являются в большинстве своем без щеточными, их ротор не имеет коллекторно-щеточного узла, а ток в обмотке возбуждения (в роторе) индуцируется за счет переменного магнитного поля, создаваемого основной и/или дополнительной обмоткой статора.

Асинхронный генератор

Асинхронная электрическая машина работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора.

В асинхронном генераторе ротор выполнен виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но кратно двум.

В бытовых бензиновых и дизельных электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. В дизельных электростанциях с частотой вращения 1500 об/мин используется четырехполюсной асинхронный генератор.

Вращающееся магнитное поле остается всегда неизменным и не регулируемым, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора и следовательно от стабильности вращения двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: высокая себестоимость, зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных нагрузках; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Синхронный и Асинхронный генератор(Альтернатор) — что это? Синхронные и Асинхронные альтернаторы в бензиновых и дизельных генераторах и электростанциях

Синхронный и Асинхронный генератор(Альтернатор) - что это?

У синхронного генератора (IP23) на якоре имеются обмотки, на которые подается электрический ток. Изменяя его величину, можно влиять на магнитное поле, а следовательно, и на напряжение на выходе статорных обмоток. Роль регулятора прекрасно исполняет простейшая электрическая схема с обратной связью по току и напряжению. Благодаря этому способность синхронного альтернатора «проглатывать» кратковременные перегрузки высока и ограничена лишь омическим (активным) сопротивлением его обмоток, т.е. легче переносят пусковые нагрузки.

Читайте так же:
Способы самостоятельной промывки дизельной и бензиновой топливной системы

Однако у такой схемы есть и недостатки. Прежде всего, ток приходится подавать на вращающийся ротор, для чего традиционно используют щеточный узел. Работая с довольно большими (особенно во время перегрузок) токами, щетки перегреваются и частично «выгорают». Это приводит к плохому их прилеганию к коллектору, к повышению омического сопротивления и к дальнейшему перегреву узла. Кроме того, подвижный контакт неизбежно искрит, а значит, становиться источником радиопомех. И самый основной недостаток низкая степень защиты от внешних воздействий таких как: пыль, грязь, вода, т.к. синхронный генератор охлаждается «протягивая» через себя воздух, соответственно все что находится в воздухе может попадать в генератор.

Если генератор щёточный, чтобы избежать преждевременного износа, рекомендуется время от времени контролировать состояние щеточного узла и при необходимости очищать либо менять щетки. Кстати, после их заменены, желательно дать им время «приработаться» к коллектору, а уж за тем нагружать станцию «по полной программе».

Многие современные синхронные генераторы снабжены безщеточными системами возбуждения тока на катушках ротора (их еще называют brash-less). Они лишены вышеуказанных недостатков связанных с щёточным узлом, а потому предпочтительнее.

для трёхфазных синхронных генераторов допустимый перекос фаз 33%

коэффициент нелинейных искажений 13-25% (в зависимости от производителя)

Асинхронный генератор (IP54) вообще не имеет обмоток на роторе. Для возбуждения ЭДС в его выходной цепи используют остаточную намагниченность якоря. Конструктивно такой альтернатор намного проще, надежнее и долговечнее. Кроме того, поскольку обмотки ротора охлаждать не нужно (их просто нет), корпус асинхронного генератора полностью закрыт, что позволяет исключить попадание пыли и влаги. Асинхронные альтернаторы не восприимчивы к коротким замыканиям, поэтому лучше подходят для питания сварочных аппаратов.

К сожалению у асинхронников тоже есть недостатки, например способность «проглатывать» пусковые перегрузки у них ниже, чем у синхронных генераторов. Но этот недостаток решается путем оснащения станций системой «стартового усиления». (см. выше). Как правило все профессиональные асинхронные генераторы оснащены системой стартового усиления.

для трёхфазных асинхронных генераторов допустимый перекос фаз 60-70%

коэффициент нелинейных искажений 2-10% (в зависимости от производителя)

Одно — и трехфазные генераторы

Зачем нужны непонятные три фазы, когда и с одной-то не разберешься? Но в том то и дело, что без них никуда. Начнем с того, что трех фазная схема подключения позволяет передавать энергию трех однофазных источников всего по трем проводам (в случае однофазной схемы потребовалось бы выделить по два провода на каждый такой источник).

В итоге при равной выходной мощности трехфазный альтернатор компактнее, легче и имеет больший КПД. К тому же он более универсален — на выходе дает как бытовые 220 вольт, так и промышленные 380 вольт.

Одно- или трехфазные генераторы. Их название вытекает из назначения — питать соответствующих потребителей. При этом к однофазным генераторам, вырабатывающим переменный ток напряжением 220 вольт и частотой 50Гц, можно подключать только однофазные нагрузки, тогда, как к трех фазным (380/220 В, 50Гц) — и те, и другие (на приборной панели имеют соответствующие розетки, количество которых у агрегатов разных производителей разное).

С однофазными альтернаторами все более или менее ясно: главное — правильно «посчитать» всех своих потребителей, учесть возможные проблемы (например, высокие пусковые точки) и выбрать агрегат с соответствующей реальной выходной мощностью. При подключении к трехфазным генераторам трехфазных же нагрузок ситуация аналогичная.

А вот при подключении к трехфазникам однофазных потребителей возникает проблема, именуемая перекосом фаз.

Что такое перекос фаз?

При подключении нагрузки на одну фазу трехфазного альтернатора используется только одна обмотка статора, в то время как в нормальном режиме задействованы все три, соответственно, реально снять получиться не более чем 33% трехфазной мощности для синхронных IP23, или порядка 70-80% для асинхронных IP54 и синхронных IP54 (High Protection). Если попробовать нагрузить агрегат сильнее, статорная обмотка окажется перегруженной и может «сгореть».

Другое дело, когда генератор сделан с «запасом». Например, когда при работе на три фазы его обмотки трудятся в треть силы. Тогда неравномерность распределения нагрузки (это и есть так называемый «перескок фаз») может составить хоть все 100%. В любом случае, не зависимо от предельных возможностей электростанции, нагрузку следует распределять равномерно — это увеличит КПД альтернатора и снизит нагрев у статорных обмоток.

Кратко подытожить выбор типа генератора можно так:

Предварительно Вы должны сами определить, какие потребители будут подключаться одновременно к генератору. При подсчёте — лучше (по возможности) проверить мощность потребителей по их паспортным данным, если это не возможно, то лучше обратится к квалифицированным специалистам, электрикам.

Читайте так же:
Полиуретан или резина — какие сайлентблоки выбрать?

Обратите особое внимание на потребителей, имеющих в своём составе электромоторы: холодильники, насосы, газонокосилки и т.д. Это связано с тем, что для пуска электромотора требуется мощность в 3 — 3,5 раза превышающая его номинальную мощность. Приведённые цифры характерны для большинства бытовых приборов (в некоторых случаях может потребоваться существенно большая мощность и редких случаях меньшая).

Синхронные и асинхронные генераторы. Отличия и особенности.

Эта статья будет посвящена такому вопросу как «различия между синхронными и асинхронными генераторами». Казалось бы вопрос довольно простой и не требует детального разбирательства, можно открыть учебник физики и все прочесть, да и в интернете должно быть много информации. Все верно, но учебник физики есть не у всякого, а в интернете слишком много противоречивой информации.

Различные сайты размещают у себя противоречивые определения одного и того же.

В этой статье мы дадим точное, максимально полное и понятное описание.

Про то, что такое электростанция, генератор и двигатель Вы уже прочти или же можете прочесть в статье на нашем сайте, которая так и называется: «Что такое генератор/электростанция».

Первое определение синхронного генератора будет техническим, а второе более практическим. Первое поможет понять устройство и принцип его работы, а второе применить знания и точнее определиться с типом генератора, который Вам необходим.

Синхронный генератор

I . Синхронный генератор – механизм, работающий в режиме генерации энергии, в котором частота вращения магнитного поля стартора [1] равна частоте вращения ротора [2] . Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку стартера, наводит в ней ЭДС [3] .

В синхронном генераторе ротор выполнен в виде постоянного магнита или электромагнита. Число полюсов ротора может быть два, четыре и т.д., но ОБЯЗАТЕЛЬНО кратно двум. В бытовых электростанция чаще всего применяют ротор с двумя полюсами. Именно этим объясняется частота вращения двигателя электростанции – 3000 об/мин [4] .

При старте электростанции, ротор создает слабое магнитное поле, но с ростом оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки ( AVR ) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Рассмотрим на примере: Подключение индуктивной нагрузки размагничивает генератор и снижает напряжение, а подключение емкостной нагрузки вызывает подмагничивание генератора и рост напряжения. Такое явление носит название «реакция якоря».

Обеспечение стабильного выходного напряжения происходит за счет изменения магнитного поля ротора путем регулирования тока в его обмотке. Это происходит за счет использования блока автоматической регулировки ( AVR ). Основным достоинством синхронного генератора является высокая стабильность выходного напряжения. Несовершенство синхронных генераторов – это возможность перегрузки по току, так как при превышении допустимой нагрузки, регулятор может слишком сильно поднять то к в обмотке ротора. Также синхронные генераторы требует периодического обслуживания, пусть и не очень частого [5] .

II . Синхронный генератор – тип генератора, который способен кратковременно выдавать ток в 3-4 раза выше номинального. Также синхронные генераторы оптимальны для подключения оборудования с высокими стартовыми токами. Это электродвигатели, насосы, компрессоры, дисковые пилы и прочий электроинструмент. Для подключения сварочных аппаратов тоже желательно использовать электростанции с синхронными генераторами.

Асинхронный генератор

I .Асинхронный генератор – асинхронный двигатель, работающий в режиме торможения. В этом случае ротор вращается в одном направлении с магнитным полем стартера, но с опережением.

Различают короткозамкнутые и фазные роторы в зависимости от типа обмотки. Вращающееся магнитное поле, создаваемое вспомогательной обмоткой стартора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке стартора, тоже принцип, что в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не поддается регулировке, поэтому частота и напряжение на выходе генератора зависят от частоты оборотов ротора, которые в свою очередь, зависят от стабильности работы двигателя электростанции.

Генераторы асинхронного типа имеют малую чувствительность к короткому замыканию и высокую степень защиты от внешних воздействий. О классах защиты мы поговорим немного позднее. Цена генераторов такого типа ниже, что является еще одним плюсом.

Асинхронные генераторы менее распространены из-за ряда недостатков: такой генератор потребляет намагничивающий ток значительной силы, поэтому для его работы требуются конденсаторы; ненадежность работы в экстремальных условиях; зависимость напряжения и частоты тока от устойчивости работы двигателя.

II . Асинхронный генератор – генератор, который можно использовать только с приборами не имеющими высоких стартовых токов и устойчивыми к незначительным перепадам напряжения. Такие генераторы стоят дешевле чем синхронные и имеют более высокий класс защиты от внешних условий.

Классы защиты генераторов

Читайте так же:
Устранение неисправности обогрева заднего стекла ВАЗ

Этот параметр обозначается буквами ( IP ) и двумя цифрами, которые и несут смысловую нагрузку. Разберемся поподробнее.

Синхронные генераторы сейчас чаще всего соответствуют классу IP 23, тогда как асинхронные – IP 54. Хотя в последнее время все больше производителей начинают выводить на рынок синхронные генераторы с таким же высоким классом защиты ( IP 54) как и у асинхронных генераторов. Такая разница в классах защиты объясняется конструктивными особенностями генераторов обоих типов. На синхронном генераторе находятся катушки индуктивности, а асинхронный генератор имеет более простую конструкцию (еще говорят «закрытую»), поскольку его ротор напоминает маховик.

• 0-защита отсутствует
• 1-защита от предметов > 50 мм
• 2-защита от предметов > 12 мм
• 3-защита от предметов > 2.5 мм
• 4-защита от предметов > 1 мм
• 5-защита от пыли

Вторая цифра означает:

• 0-защита отсутствует
• 1-защита от вертикально падающих капель воды
• 2-защита от капель воды, падающих под углом 15 градусов к вертикали
• 3-защита от брызг воды, падающих под углом 60 градусов к вертикали
• 4-защита от водяной пыли, распыленной со всех сторон
• 5-защита от струй воды со всех сторон

Надеемся, что после прочтения этой статьи Вам станет немного проще выбрать генератор, который подойдет Вам больше всего.

Специалисты интернет магазина

генераторов и электростанций «Мега-ватт»

[1] Статор (англ. stator, от лат. sto — стою) электромашины, неподвижная часть электрической машины, выполняющая функции магнитопровода и несущей конструкции. Стартор состоит из сердечника и станины.

[2] Ротор в технике [от лат. roto — вращаю (сь)], 1) вращаюшаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела

[3] Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил (Eex). В замкнутом контуре (L) тогда ЭДС будет равна:

, где dl — элемент длины контура.

ЭДС, так же как и напряжение, измеряется в вольтах.

[4] При вращении ротора его магнитное поле наводит в трёхфазной обмотке статора переменную эдс, частота которой f = р . п, где р и n — соответственно число пар полюсов и частота вращения ротора. Быстроходные С. г. (турбогенераторы) имеют малое число пар полюсов (р = 1, 2), а в тихоходных (гидрогенераторах) р достигает нескольких десятков. Величина эдс регулируется изменением тока в обмотке ротора.

Что такое асинхронный генератор, чем он отличается от синхронного и где используется

переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора
n
, называемой синхронной частотой вращения:

=
f/ p
где p

– число пар полюсов обмотки статора и ротора. Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

=
60·f/ p
На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток. В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС E

A ,
E
B и
E
C , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи I

A,
I
B,
I
C , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

– магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l
– активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w
– количество витков;
v = πDn
– линейная скорость движения полюсов ротора относительно статора, м/с;
D
– внутренний диаметр сердечника статора, м.

Читайте так же:
Дополнительный насос в системе отопления автомобиля

Формула ЭДС показывает, что при неизменной частоте вращения ротора n

форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции
B
в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду
B = Bmax sinα
, то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Так, если воздушный зазор δ

постоянен (рис. 1.2), то магнитная индукция
B
в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен
δ
max (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора
f
(Гц) пропорциональна синхронной частоте вращения ротора
n
(об/с)

– число пар полюсов. В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е.
p
= 1. Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой
n
= 50 об/с (
n
= 3000 об/мин).

Что такое асинхронный генератор, чем он отличается от синхронного и где используется

История создания асинхронного генератора Трехфазные асинхронные двигатели были созданы еще в 19 веке. Сейчас изобретение русского ученого М.О.

Доливо-Добровольского используется повсеместно: как в повседневной жизни, так и в промышленных масштабах. Асинхронный генератор – самое простое и надежное в использовании решение. Именно поэтому эксперты рекомендуют использовать асинхронные генераторы в тех случаях, когда нет необходимости в реактивной мощности. Иными словами, в масштабах мелкой промышленности, а также в бытовых условиях асинхронные генераторы – это лучшее решение из всех существующих. Виды и характеристики генераторов Сегодня различают два основных типа асинхронных генераторов: с фазным и короткозамкнутым ротором. Характеристика генератора отвечает за многое. Технические характеристики двух этих моторов существенно различаются, строение может быть интересно только механикам. Рядовой пользователь должен знать, что фазный ротор – это более дорогое решение, которое требует обслуживания высококвалифицированными специалистами. Несмотря на это, они менее надежны, поэтому их используют только в тех областях, где без них невозможно обойтись. В условиях бытового использования двигатели с короткозамкнутым ротором полностью погашают все потребности, поэтому в продаже чаще встречаются именно такие генераторы. Именно поэтому, выбирая подходящую модель, нужно хорошо изучать характеристики генератора. Использование асинхронных генераторов Использование асинхронного генератора в повседневной жизни становится просто необходимо по причине частых перебоев с электричеством. Если вы живете в большом городе, то вам такая проблема не знакома. Однако что делать тем, кто живет за пределами города? Выходом в такой ситуации становятся именно асинхронные генераторы, которые способны обеспечить бесперебойным электричеством целый дом или квартиру. Мощность генератора должна определяться потребностями покупателя. Для этого необходимо определить общее напряжение в сети и понять, какое количество энергии потребляется объектом. В соответствии с этими показателями следует подбирать подходящее решение. Характеристика генератора должна соответствовать требованиям. Для того чтобы найти подходящее решение и не ошибиться с выбором, необходимо проконсультироваться с продавцами, которые позволят посмотреть генератор и сравнить его с другими решениями. Только после тщательного сравнения можно приступать к выбору аппаратуры, которая должна прослужить долгие годы и не приносить каких-либо проблем.

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В

(рис. 1.3, а). Обмотка возбуждения (
ОВ
) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (
ПВ
). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя
r
1 и подвозбудителя
r
2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В

(рис. 1.3, б). Трехфазная обмотка
2
возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель
3
непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения
1
возбудителя В осуществляется от подвозбудителя
ПВ
– генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

Читайте так же:
Ремонт маховика двигателя своими руками

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП

преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ

) с выпрямительным трансформатором (
ВТ
) и тиристорным преобразователем (
ТП
), через которые электроэнергия переменного тока из цепи статора
СГ
после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения
АРВ
, на вход которого поступают сигналы напряжения на входе
СГ
(через трансформатор напряжения
ТН
) и тока нагрузки
СГ
(от трансформатора тока
ТТ
). Схема содержит блок защиты (
БЗ
), обеспечивающий защиту обмотки возбуждения (
ОВ
) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности). В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы

составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов. Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

АСИНХРОННЫЙ АЛЬТЕРНАТОР: ПЛЮСЫ

Бесщеточный альтернатор не имеет обмотки на подвижной части, да и сама подвижная часть смахивает на маховик. Таким образом, и в щетках нет необходимости. Для работы генератору достаточно магнитного поля и конденсаторов. Технически конструкция у асинхронного альтернатора проще, а значит, долговечнее и надежнее, техническое обслуживание (замена щеток) вообще отсутствует. Обмотки медной нет, перегрева быть не может и охлаждение не требуется. Конструкция бесщеточного генератора такова, что пыль, влага и грязь не затягиваются вовнутрь. Благодаря этому повышается класс защиты. Бесщеточные генераторы обладают самым высоким уровнем защиты. Защищены от струй воды, падающих под любым углом, проникновения мелких пылинок и касаний. Вес и размеры асинхронного генератора намного меньше, ведь у него нет медной обмотки и вентилятора для охлаждения. То есть, получаем такие плюсы отсутствия щеток и обмотки:

  • Хорошая защита от пыли и грязи.
  • Небольшой вес и размеры.
  • Низкая цена.
  • Не нужно менять щетки.
  • И самый главный плюс — бесщеточный альтернатор невосприимчив к коротким замыканиям, что особенно важно при подключении к электростанции сварочных аппаратов.

СИНХРОННЫЙ АЛЬТЕРНАТОР: ПРЕИМУЩЕСТВА В РАБОТЕ

Качественный синхронный альтернатор для прохождения тока на роторе имеет медную обмотку. Иногда дешевые и низкокачественные модели генераторов оснащены алюминиевой обмоткой. Она хороша для редкого использования генератора при небольших нагрузках. А для получения тока высокого качества лучше приобрести генератор с медной обмоткой от стабильных и проверенных временем брендов. Кроме обмотки, есть скользящие контакты, называемые щетками, задачей которых является снятие напряжение с неподвижной части на подвижную часть, в связи, с чем через них проходит электроток. Именно медная обмотка и узел щеток на роторе являются гарантией легкого переноса пусковых нагрузок и кратковременных перегрузок альтернатора. Таким образом, синхронный генератор выдает на выходе напряжение без перепадов и скачков. Возможно минимальное отклонение — около 5%. Советы специалистов в этой отрасли гласят, что синхронная электростанция лучше асинхронной, так как выдается качественный и чистый ток. Известнейшая функция автоматического регулятора напряжения (AVR) работает только в синхронном генераторе. Качественный и ровный ток играет немаловажную роль при подключении к питанию электроприборов, таких как, ноутбук, принтер, комп’ютер, модем, телефон. Чувствительное лабораторное и медицинское оборудование также требует качественного и ровного тока. На бытовом уровне щеточный генератор будет более полезен, так как обеспечиваются качественным током и чувствительные к перепадам напряжения холодильники, телевизоры, стиральные машины.

голоса
Рейтинг статьи
Ссылка на основную публикацию